Selasa, 22 November 2016

DIODA DASAR

DIODA
Dioda merupakan komponen elektronika non-linier yang sederhana. Struktur dasar dioda berupa bahan semikonduktor type P yang disambung dengan bahan type N. Pada ujung bahan type P dijadikan terminal Anoda (A) dan ujung lainnya katoda (K), sehingga dua ter-minal inilah yang menyiratkan nama dioda. Operasi dioda ditentukan oleh polaritas relatif kaki Anoda terhadap kaki Katoda. Karakteristik dioda terdiri atas kurva maju dan kurva mundur. Pada bias maju arus mengalir dengan besar se-dangkan pada bias mundur yang mengalir hanya arus bocor kecil.

 Teori Semikonduktor

Operasi semua komponen benda padat seperti dioda, LED, Transistor Bipolar dan FET serta Op-Amp atau rangkaian terpadu lainnya (solid state) didasarkan atas sifat-sifat semikon-duktor. Secara umum semikonduktor adalah bahan yang sifat-sifat kelistrikannya terletak an-tara sifat-sifat konduktor dan isolator. Sifat-sifat kelistrikan konduktor maupun isolator tidak mudah berubah oleh pengaruh temperatur, cahaya atau medan magnit, tetapi pada semikon-duktor sifat-sifat tersebut sangat sensitif.

Elemen terkecil dari suatu bahan yang masih memiliki sifat-sifat kimia dan fisika yang sama adalah atom. Suatu atom terdiri atas tiga partikel dasar, yaitu: neutron, proton, dan elek-tron. Dalam struktur atom, proton dan neutron membentuk inti atom yang bermuatan positip dan sedangkan elektron-elektron yang bermuatan negatip mengelilingi inti. Elektron-elektron ini tersusun berlapis-lapis. Struktur atom dengan model Bohr dari bahan semikonduktor yang paling banyak digunakan, silikon dan germanium,

Muatan listrik sebuah elektron adalah: - 1.602-19 C dan muatan sebuah proton adalah: + 1.602-19 C.

Elektron yang menempati lapisan terluar disebut sebagai elektron valensi. Atom sili-kon dan germanium masing-masing mempunyai empat elektron valensi. Oleh karena itu baik atom silikon maupun atom germanium disebut juga dengan atom tetra-valent (bervalensi em-pat). Empat elektron valensi tersebut terikat dalam struktur kisi-kisi, sehingga setiap elektron valensi akan membentuk ikatan kovalen dengan elektron valensi dari atom-atom yang berse-belahan. Struktur kisi-kisi kristal silikon murni dapat digambarkan secara dua dimensi guna memudahkan pembahasan.

Meskipun terikat dengan kuat dalam struktur kristal, namun bisa saja elektron valensi tersebut keluar dari ikatan kovalen menuju daerah konduksi apabila diberikan energi panas. Bila energi panas tersebut cukup kuat untuk memisahkan elektron dari ikatan kovalen maka elektron tersebut menjadi bebas atau disebut dengan elektron bebas. Pada suhu ruang terdapat kurang lebih 1.5 x 1010 elektron bebas dalam 1 cm3 bahan silikon murni (intrinsik) dan 2.5 x 1013 elektron bebas pada germanium. Semakin besar energi panas yang diberikan semakin banyak jumlah elektron bebas yang keluar dari ikatan kovalen, dengan kata lain konduktivitas bahan meningkat.

Setiap elektron yang menempati suatu orbit tertentu dalam struktur atom tunggal (atau terisolasi) akan mempunyai level energi tertentu. Semakin jauh posisi orbit suatu elektron, maka semakin besar level energinya. Oleh karena itu elektron yang menduduki posisi orbit terluar dalam suatu struktur atom atau yang disebut dengan elektron valensi, akan mempunyai level energi terbesar. Sebaliknya elektron yang paling dekat dengan inti mempunyai level energi terkecil.

Besarnya energi dari suatu elektron dinyatakan dengan satuan elektron volt (eV). Hal ini disebabkan karena definisi energi merupakan persamaan:



dimana: W = energi [Joule (J)] Q = muatan (Coulomb)

V = potensial listrik [Volt (V)]


Dengan potensial listrik sebesar 1 V dan muatan elektron sebesar  1.602-19 C, maka energi dari sebuah elektron dapat dicari:



4
Bab 1. Dioda Semikonduktor


W = (1.602-19  C) (1 V) = 1.602-19  J

Hasil tersebut menunjukkan bahwa untuk memindahkan sebuah elektron melalui beda poten-sial sebesar 1 V diperlukan energi sebesar 1.602-19 J. Atau dengan kata lain:

1 eV = 1.602-19  J

Bila atom-atom tunggal dalam suatu bahan saling berdekatan (dalam kenyatannya memang mesti demikian) sehingga membentuk suatu kisi-kisi kristal, maka atom-atom akan berinteraksi dengan mempunyai ikatan kovalen. Karena setiap elektron valensi level ener-ginya tidak tepat sama, maka level energi jutaan elektron valensi dari suatu bahan akan mem-bentuk range energi atau yang disebut dengan pita energi valensi atau pita valensi.

Suatu energi bila diberikan kepada elektron valensi, maka elektron tersebut akan me-loncat keluar. Oleh karena elektron valensi terletak pada orbit terluar dari struktur atom, ma-ka elektron tersebut akan meloncat ke daerah pita konduksi. Pita konduksi merupakan level energi dimana elektron terlepas dari ikatan inti atom atau menjadi elektron bebas. Jarak ener-gi antara pita valensi dan pita konduksi disebut dengan pita celah atau daerah terlarang.

Seberapa besar perbedaan energi, Eg, (jarak energi) antara pita valensi dan pita kon-duksi pada suatu bahan akan menentukan apakah bahan tersebut termasuk isolator, semikon-duktor atau konduktor. Eg adalah energi yang diperlukan oleh elektron valensi untuk berpin-dah dari pita valensi ke pita konduksi. Eg dinyatakan dalam satuan eV (elektron volt). Se-makin besar Eg, semakin besar energi yang dibutuhkan elektron valensi untuk berpindah ke pita konduksi.W = Q.V

Pada bahan-bahan isolator jarak antara pita valensi dan pita konduksi (daerah terla-rang) sangat jauh. Pada suhu ruang hanya ada sedikit sekali (atau tidak ada) elektron valensi yang sampai keluar ke pita konduksi. Sehingga pada bahan-bahan ini tidak dimungkinkan terjadinya aliran arus listrik. Diperlukan Eg paling tidak 5 eV untuk mengeluarkan elektron valensi ke pita konduksi.

pita valensi

Eg = 1.1 eV (Si)
Eg = 0.67 eV(Ge)


pita valensi dan konduksi saling tumpang tindih


Pada bahan semikonduktor lebar daerah terlarang relatif kecil. Pada suhu mutlak 0o

Kelvin, tidak ada elektron valensi yang keluar ke pita konduksi, sehingga pada suhu ini bahan semikonduktor merupakan isolator yang baik. Namun pada suhu ruang, energi panas mampu memindahkan sebagian elektron valensi ke pita konduksi (menjadi elektron bebas). Pada ba-han silikon dan germanium masing-masing Eg-nya adalah 1.1 eV dan 0.67ev.

Dioda Semikonduktor

maka hole menjadi tersisi dan tempat dari elektron yang berpindah tersebut menjadi kosong atau hole. Dengan demikian arah gerakan hole (seolah-olah) berlawanan dengan arah gerakan elektron.

Sedangkan pada bahan konduktor pita valensi dan pita konduksi saling tumpang tin-dih. Elektron-elektron valensi sekaligus menempati pada pita konduksi. Oleh karena itu pada bahan konduktor meskipun pada suhu Oo K, cukup banyak elektron valensi yang berada di pi-ta konduksi (elektron bebas).
 Semikonduktor type n

Apabila bahan semikonduktor intrinsik (murni) diberi (didoping) dengan bahan berva-lensi lain maka diperoleh semikonduktor ekstrinsik. Pada bahan semikonduktor intrinsik, jumlah elektron bebas dan holenya adalah sama. Konduktivitas semikonduktor intrinsik san-gat rendah, karena terbatasnya jumlah pembawa muatan yakni hole maupun elektron bebas tersebut.

Jika bahan silikon didoping dengan bahan ketidak murnian (impuritas) bervalensi lima (penta-valens), maka diperoleh semikonduktor tipe n. Bahan dopan yang bervalensi lima ini misalnya antimoni, arsenik, dan pospor.

Karena atom antimoni (Sb) bervalensi lima, maka empat elektron valensi menda-patkan pasangan ikatan kovalen dengan atom silikon sedangkan elektron valensi yang kelima tidak mendapatkan pasangan. Oleh karena itu ikatan elektron kelima ini dengan inti menjadi lemah dan mudah menjadi elektron bebas. Karena setiap atom dopan ini menyumbang se-buah elektron, maka atom yang bervalensi lima disebut dengan atom donor. Dan elektron “bebas” sumbangan dari atom dopan inipun dapat diko ntrol jumlahnya atau konsentrasinya.

 Semikonduktor type P

Apabila bahan semikonduktor murni (intrinsik) didoping dengan bahan impuritas (ke-tidak-murnian) bervalensi tiga, maka akan diperoleh semikonduktor type p. Bahan dopan yang bervalensi tiga tersebut misalnya boron, galium, dan indium.

harusnya membentuk ikatan kovalen keempat menjadi kosong (membentuk hole) dan bisa di-tempati oleh elektron valensi lain. Dengan demikian sebuah atom bervalensi tiga akan me-nyumbangkan sebuah hole. Atom bervalensi tiga (trivalent) disebut juga atom akseptor, kare-na atom ini siap untuk menerima elektron.

Seperti halnya pada semikonduktor type n, secara keseluruhan kristal semikonduktor type n ini adalah netral. Karena jumlah hole dan elektronnya sama. Pada bahan type p, hole merupakan pembawa muatan mayoritas. Karena dengan penambahan atom dopan akan me-ningkatkan jumlah hole sebagai pembawa muatan. Sedangkan pembawa minoritasnya adalah elektron

Dioda Semikonduktor

Dioda semikonduktor dibentuk dengan cara menyambungkan semikonduktor type p dan type n. Pada saat terjadinya sambungan (junction) p dan n, hole-hole pada bahan p dan elektron-elektron pada bahan n disekitar sambungan cenderung untuk berkombinasi. Hole dan elektron yang berkombinasi ini saling meniadakan, sehingga pada daerah sekitar sambun-gan ini kosong dari pembawa muatan dan terbentuk daerah pengosongan (depletion region).

Bias Mundur (Reverse Bias)

Bias mundur adalah pemberian tegangan negatip baterai ke terminal anoda (A) dan te-gangan positip ke terminal katoda (K) dari suatu dioda. Dengan kata lain, tegangan anoda ka-toda VA-K adalah negatip (VA-K < 0)
Karena pada ujung anoda (A) yang berupa bahan tipe p diberi tegangan negatip, maka hole-hole (pembawa mayoritas) akan tertarik ke kutup negatip baterai menjauhi persambun-gan. Demikian juga karena pada ujung katoda (K) yang berupa bahan tipe n diberi tegangan positip, maka elektron-elektron (pembawa mayoritas) akan tertarik ke kutup positip baterai menjauhi persambungan. Sehingga daerah pengosongan semakin lebar, dan arus yang dis-ebabkan oleh pembawa mayoritas tidak ada yang mengalir.Sedangkan pembawa minoritas yang berupa elektron (pada bahan tipe p) dan hole (pada bahan tipe n) akan berkombinasi sehingga mengalir arus jenuh mundur (reverse satura-tion current) atau Is. Arus ini dikatakan jenuh karena dengan cepat mencapai harga maksi-mum tanpa dipengaruhi besarnya tegangan baterai. Besarnya arus ini dipengaruhi oleh tem-peratur. Makin tinggi temperatur, makin besar harga Is. Pada suhu ruang, besarnya Is ini da-lam skala mikro-amper untuk dioda germanium, dan dalam skala nano-amper untuk dioda si-likon.

Bias Maju (Foward Bias)

Apabila tegangan positip baterai dihubungkan ke terminal Anoda (A) dan negatipnya ke terminal katoda (K), maka dioda disebut mendapatkan bias maju (foward bias). Dengan demikian VA-K adalah positip atau VA-K > 0.

Resistansi Dioda

Karena kurva karakteristik dioda tidak linier, maka resistansi dioda berbeda-beda anta-ra satu titik operasi ke titik operasi lainnya. Pemberian tegangan dc kepada suatu rangkaian yang ada dioda semikonduktornya akan menentukan titik kerja dioda tersebut pada kurva ka-rakteristik. Apabila tegangan dc yang diberikan tidak berubah maka titik kerja dioda juga ti-dak berubah. Perbandingan antara tegangan pada titik kerja dengan arus yang mengalir pada dioda disebut dengan Resistansi DC atau Resistansi Statis.


Resistansi dc pada daerah bias maju akan lebih kecil dibanding dengan resistansi pada daerah bias mundur. VD
......................(1.6)
RD = ¾¾

Tidak ada komentar:

Posting Komentar